

ID440: Honors Capstone

Financial Programming:

Koios | an Excel Add-in in C#

April 23
rd

, 2010

Submitted by: Lubka A. Dagorova

Faculty Advisor: Professor Nathan Carter

Dagorova pg. 1

Introduction to Excel Add-ins

With its first launch in 1984, Microsoft Excel was originally created for the Macintosh Operating

System. However, through subsequent developments and the launch of the Microsoft Windows Operating

System in 1987, Excel quickly became the most widely used spreadsheet application by both private users

and business professionals (Sharon Parq Associates, Inc.) In addition to the fact that applications within

the Microsoft Office Suite are entirely compatible with one another, one of the most significant program

features that made this possible was a macro programming language known as Visual Basic for

Applications (VBA) (Sharon Parq Associates, Inc.). Included in 1993, VBA made it possible for different

users to customize Excel for specific needs by creating user-defined functions and automated processes.

In order to allow developers to share their customizations with other users, Excel created new file

formats such as XLA and XLL that allowed these customizations to be “added on” to the software’s

standard features. Hence, the term “Excel add-in” was created, and developers have since then created

myriad add-ins that carry out very specific tasks, such as statistical analyses and hypothesis testing. While

some of these have been created by Microsoft and are therefore automatically included in Excel, the vast

majority has been created by third-party developers and must be installed separately (Microsoft Support).

Currently, there are two different types of add-ins that can be used: COM add-ins and automation

add-ins. The primary difference between the two lies in the method in which users access the

functionality that each offers. Simply put, automation add-ins are accessed through cell formulas in

worksheets while COM add-ins, like Koios, are accessed through the graphical user interface, such as

buttons on the Excel ribbon (Microsoft Support). For more advanced users, Microsoft explains the

underlying technical differences in the following manner:

COM Add-ins must be in-process COM servers that support the IDTExtensibility2

interface; however, Automation Add-ins can be in-process or out-of-process COM

Dagorova pg. 2

servers and implementation of IDTExtensibility2 is optional… All COM Add-ins must

implement each of the five methods of this [IDTExtensibility2] interface: OnConnection,

OnStartupComplete, OnAddinsUpdate, OnBeginShutDown, and OnDisconnection

(Microsoft Support).

Both of these add-in types use the XLA and XLL file format. However, the primary different here is

that XLA add-ins are typically written in VBA while XLL add-ins are typically written in some other

programming language, such as C, C++, Visual Basic, and FORTRAN. In many cases, like Koios, C# is

also used.

Benefits of Add-ins: How are they useful?

Because add-ins can be tailored to accommodate an arbitrary number of tasks, they offer many

benefits to users:

 Increase user efficiency: Using add-ins allows users to spend less time on menial tasks, such as

formatting and more time on more important tasks, such as data analysis. This may be of particular

importance to professional users who use Excel to analyze spreadsheets that contain enormous

amounts of data.

 Reduce the learning curve: Excel has become such a popular application in the business world that

most professionals are already familiar with how to use the software. Therefore, add-ins simply build

on that knowledge without requiring users to learn how to use an entirely new software platform.

 New user capabilities: Add-ins are created to perform specific tasks, many of which users may not

otherwise be able to do in Excel. The wealth of options available when it comes to add-ins gives users

the opportunity to analyze data in ways that they may not have thought of before. Thus, add-ins are

also useful in that they can sometimes give a user a fresh perspective from which to evaluate

information.

Dagorova pg. 3

 Exploit interoperability: The various applications within the Microsoft Office Suite (Word, Excel,

PowerPoint, Access, etc.) are built to be compatible with one another, allowing users to move data

from one application to another with minimal effort. Therefore, data created through the use of add-

ins can still be shared across organizations not only in Excel but in the rest of the Microsoft Office

Suite as well, thereby encouraging collaboration.

While Koios takes advantage of all of these benefits to a certain extent, it is mostly concerned with

enhancing user knowledge because it performs a function that gives the user access to data that would

otherwise take a significant amount of time to accumulate. Koios is a finance add-in that extracts stock

price data from different stock exchanges around the world and, taking into account commission charges

and current exchange rates, informs the user if market mispricing exists. Hence, the fundamental finance

principle around which KOIOS was built is what is known as the “Law of One Price,” which states that,

“in an efficient market, all identical goods must have only one price.” While this theory should hold true

in financial markets, this is not always the case. Thus, theoretically, it should not matter whether KOIOS

is extracting data from a stock exchange in the United States, Canada, or China. Once the data from each

is converted to a base currency, the prices should be equal. If they are not, there is an arbitrage

opportunity, whereby the user can buy the stock at the lower price and sell the stock at the higher price to

make a financial profit.

Methodology for Creating Add-in

Concept Phase

As is the case with most projects, the concept phase usually involves brainstorming and planning.

Going into this project, only one thing was certain: a finance add-in would be created. However, the

specifics in terms of what it would do and how it could be created (i.e. what programming language

would be used) were uncertain.

Dagorova pg. 4

Initially, the goal was to create an add-in that could suggest hedging strategies that limit a

corporation’s exposure to the foreign exchange market based on the user’s risk preference and

speculations about the market. After receiving inputs from the user, the add-in would have suggested

short- and long-term strategies such as forward contracts, futures contracts, options contracts, swap, and

money market hedges. However, Professor Jahangir Sultan of the Finance Department at Bentley

University suggested that such an application might not be useful to finance professionals because

advanced applications that perform this function already exist. So the target audience of the project then

expanded to include the average user as well, since obviously many advanced finance applications exist

but few of them are available at low or no cost. Thus, the idea for Koios was created since international

arbitrage was a simple enough concept that it would be of interest to both finance professionals and to

private home users.

Furthermore, the project was originally intended as an opportunity to learn the C++ programming

language since preliminary research showed that this was the most widely used programming language

for finance applications. However, given that project was specifically designed to be compatible with

Excel, it quickly became apparent that C# or Visual Basic (VB), which is closely related to VBA, were

more logical choices for this specific type of application since both were developed by Microsoft and

were therefore entirely compatible with Excel. Consequently, they are better supported for this kind of

work by Microsoft’s developer tools. The differences between C# and VB are syntactic sugar, which

simply means that some tasks are easier for a human to write in one language compared to another.

However, since both C# and VB are both extensively used to program the .NET framework, the choice to

use C# was based entirely on the fact that it shares syntax similarities with Java, which is a programming

language that I already know.

Dagorova pg. 5

Development Phase

Koios was developed with Microsoft Visual Studio 2008 (Professional Edition) on an HP6930p

Elitebook running a 64-bit version of Windows 7 Professional.

Writing the code for the add-in involved the following steps:

1. Adding a tab to the Excel ribbon through which Koios could be accessed

2. Creating a window that would prompt the user to enter the required inputs

3. Fetching the data from the World Wide Web and importing it into an Excel Workbook

4. Performing the necessary calculations (i.e. converting the price to the base currency and adding

commission charges) and generating a conclusion table with a suggested trading strategy

For more information about user workflow in Koios, see the add-in documentation available at

http://web.bentley.edu/empl/c/ncarter/student_capstone.html.

Since Visual Studio includes templates for Excel add-ins written in C# and VB, the first and second

steps were relatively simple. Adding the ribbon item was entirely automated and creating the window was

done through a graphical user interface, which allowed user interface elements to be dragged and dropped

into the window. From there, the properties of each element could be set through a properties window.

The third and fourth steps in the process, however, were the most time consuming and involved a

significant amount of research. Koios was written in such a way that the entire process of creating a new

workbook, fetching the data, performing the calculations, and generating the conclusion table all occur

immediately when the user clicks the “next” button.

Dagorova pg. 6

The following is a basic walkthrough that describes each section of code and what it does (please

refer to Figure 1.1 for each “section” of code):

Figure 1.1

 Once the user has opened Excel and accessed Koios (for more information on this process, see the

accompanying documentation found at http://web.bentley.edu/empl/c/ncarter/student_capstone.html,

the Excel application is launched and a new workbook containing the default number of worksheets is

created.

 Koios moves through successive rows of the worksheet for each new line of output.

***NOTE: Since this happens at many points throughout the code, the walkthrough will not identify each

occurrence. In addition, since cell formatting also occurs extensively throughout the code, and this will

also not be explicitly stated.

1. Koios provides a summary of the user inputs as shown in (a) – (e).

(a) Koios determines which of the two investment accounts is selected in question 1 from Figure 1.1

and outputs the value in the current row.

Dagorova pg. 7

(b) Koios determines which of the two trade methods is selected in question 2 from Figure 1.1 and

outputs the value in the current row.

(c) Koios determines which item in the base currency ComboBox is selected and extracts a substring

containing the first three letters of text (i.e. “EUR: Euro” becomes a new string that contains “EUR”).

This value is outputted in the currency row.

(d) Koios simply returns the text from question 4 from Figure 1.1 in the current row.

2. Koios loops through each selected item in the exchange list box from question 5 in Figure 1.1 and

outputs a string that contains all of the selected items, separated by “||”. Within this loop, several sub-

processes occur:

a. Now that Koios has information on the investment account, the trade method, the base

currency, and the exchange, it can determine the commissions that will be charged for each

trade. A second loop goes through each selected item and determines which country the

exchange is associated with as well as its base currency (i.e. NASDAQ/NYSE is associated

with “USA” and “USD”). Within this second loop, the following steps occur:

1. Behind the scenes, Koios goes to www.xe.com and saves the exchange rate from

the selected base currency to the exchange’s local currency.

2. Depending on the investment account and type of trade, the appropriate

commission charge is selected (these are hard-coded into the add-in) and

converted to the base currency.

3. A table is created containing the commission charge for each country, and the

counter is incremented.

4. A second table is created containing the exchange rate data for each local

currency compared to the base currency.

3. Koios saves the “from” and “to” dates selected by the user, but it does not output them anywhere.

Dagorova pg. 8

a. In addition, since Koios now has the stock ticker, it can search for the stock on multiple

exchanges. However, since difference exchanges use different ticker symbols for the same

company, Koios uses the US ticker to search Yahoo! Finance (UK) for the corresponding

ISIN number. Once that’s found, it performs a second search on Yahoo! Finance (UK) to find

all the tickers on all the exchanges for the corresponding ISIN.

i. Yahoo! Finance appends ticker symbols with suffixes for each exchange. For example,

a stock traded on the Toronto Stock Exchange will have a “.TO” suffix. Since Koios

only follows a few exchanges, it goes through the string that includes all possible ticker

symbols for a given company to extract the ones that are of interest to the user.

ii. A URL with the location of the historical stock price data is saved into the program,

and each required piece of information is substituted with the user’s own inputs. More

specifically, in the URL below, each item in bold is substituted:

http://ichart.finance.yahoo.com/table.csv?s=[symbol]&a=[startMonth]&b=[startDay]

&c=[startYear]&d=[endMonth]&e=[endDay]&f=[endYear]&g=d&ignore=.csv. The

code to initiate the web client and to replace parts of this particular URL was taken

from a tutorial by Peter Bromberg, which can be found at the following URL:

http://www.eggheadcafe.com/tutorials/aspnet/f651bcc7-1256-4e4d-bbc1-

95f88500d86b/c-net-yahoo-stock-downl.aspx.

1. Since the URL points to a *.csv file, it is relatively easy to read into Excel. Thus,

a Stream is created with the data from the URL, and a Streamreader “reads” each

line of the *.csv file through the use of a loop. Since such files are usually

comma delimited, another loop goes through each line that gets read and splits

the line at each comma. The resulting substrings are saved to a new column (i.e.

Date, Open, High, Low, Close, Volume, and Adj Close).

Dagorova pg. 9

iii. However, since not all stocks are traded on all exchanges, Koios determines whether

the number of exchanges selected corresponds to the number of exchanges found. If

they are equal, it simply outputs the stock price data. If they are not equal, it informs

the user that the stock they are searching for was not found on all of the exchanges.

Figure 1.2

 Once all of this data has been saved, where necessary, and outputted into the Excel sheet, Koios is

ready to form a conclusion table with the suggested strategy as shown in Figure 1.2 above. First, it

prints out the exchange rate and commission (in the base currency) for each country again. Second, it

converts the most recent stock price available on each exchange into the base currency. Finally, it

adds the commission to the stock price. The final strategy is a result of a comparison between the cost

to buy the stock and the cost to sell the stock. For example, Figure 1.2 shows the conclusion table for

GE stock on the NYSE and Euronext Paris. Since it is less expensive on the NYSE the user would

want to buy it in the US and sell it in France. The price to buy the stock is equal to the price +

commission, which is 19.82. The cost to sell the stock is equal to the commission charge for Euronext

Paris plus the difference in the price. More specifically, it is 19.99 + (13.89 – 13.84), which is equal

to 20.04. Therefore, since it would cost more to sell it than it would to buy it, there is no opportunity

to make a financial profit. If the situation was reversed (i.e. the cost to buy was less than the cost to

sell), the user could proceed with the transaction. (***NOTE: prices on Yahoo! Finance, and

consequently in the spreadsheet, are delayed by approximately 15 minutes.)

 Control of the Excel sheet is returned to the user.

Dagorova pg. 10

Implementation/Testing Phase

The implementation and testing phase is perhaps one of the most important because this is when bugs

in the code are identified and resolved. Therefore, there is a strong relationship between this phase and the

development phase.

The first part of the implementation/testing phase involved verifying that the correct data is extracted

from www.xe.com and Yahoo! Finance. A few companies from each exchange were chosen, and the

resulting information in the Excel spreadsheets was checked against the data available on the websites.

Overall, Koios works seamlessly in this regard.

However, a few problems were encountered with the Yahoo! Finance service. First, it was initially

unclear what currency Yahoo! Finance lists stock price data for each exchange as it was not explicitly

stated on the stock’s page or in the help and support pages. However, through comparisons with Google

Finance and stock price data from the exchanges’ websites, it quickly became apparent that prices are

listed in the exchange’s local currency. A second problem was that not all desired exchanges were

available through Yahoo! Finance. For example, Koios is intended to be entirely compatible with

E*TRADE, which trades on five international exchanges: Toronto Stock Exchange, Euronext Paris, Hong

Kong Stock Exchange, Tokyo Stock Exchange, and London Stock Exchange (LSE) (E*TRADE).

However, Yahoo! Finance does not include data on the Tokyo Stock Exchange, and the London Stock

Exchange appears to trade certain stocks infrequently (London Stock Exchange). For example, one test

case was for JPMorgan Chase (Ticker: JPM) stock on the NYSE and the London Stock Exchange (LSE).

However, first, LSE appears to list stock price data in pence, which, on its own, is an easy problem to fix.

Unfortunately, upon further inspection of their website, it appears that some stocks are traded in Euros

and others in Dollars (London Stock Exchange). Therefore, it becomes unclear which exchange rate

Koios should use for each company. Furthermore, since Yahoo! Finance is a free source of data, in order

to ensure that it is in fact accurate, price data was compared to Bloomberg at the Hughey Center for

Dagorova pg. 11

Financial Services at Bentley University. Regrettably, they did not have much historical price data for the

two primary test cases: JPMorgan Chase and Bank of America. Thus, the decision was made to eliminate

LSE from the add-in altogether.

The implementation/testing phase also relates to the finalization phase in that once the program was

completed, it had to be tested on various machines with different operating systems. The Koios

installation was tested on three operating systems: Windows XP Professional, Windows Vista Enterprise,

and Windows 7 Basic and Professional. Once it installs the required prerequisites, which occurs

automatically during installation, Koios works as intended on Windows Vista Enterprise and on both

versions of Windows 7. Unfortunately, for reasons that are unclear, Koios does not appear to be

compatible with Windows XP Professional. The installation process proceeds as intended, but the add-in

itself does not appear to function correctly as it does not consistently search all the exchanges selected by

the user. In addition, there were times when no output was generated at all but no error message was

shown. The installation requires the following other prerequisites to proceed: Microsoft Office Excel

2007, Windows Installer 3.1, .NET Framework 3.5, Visual Studio Tools for the Office System 3.0

Runtime. All of the machines already have .NET Framework 3.5 and Microsoft Office Enterprise. The

installation settings are such that any required prerequisites that are missing from the user’s machine are

automatically downloaded and installed from the Microsoft website, and this feature works flawlessly

when installing the Visual Studio Tools for the Office System 3.0 Runtime. In addition, while there

should be no problems running Koios on a standard Microsoft Office edition, this was not tested.

Finalization Phase

The finalization phase of the project involved three things:

1. Creating the Koios installer

2. Writing the accompanying documentation and tutorials

3. Publishing the program and all related documentation to a website.

Dagorova pg. 12

The Koios installation was created automatically through Visual Studio using the publish feature, and

it was later tested as described in the implementation/testing phase section. The documentation and

tutorials were then created and published on the following website:

http://web.bentley.edu/empl/c/ncarter/student_capstone.html

Add-in Limitations: How can it be improved?

While Koios incorporates all the core functionality of the original plan, there are still many features

that could be included to make it a more comprehensive and user-friendly program. While Koios is

complete for the purposes of the Honors Capstone project, I intend to develop newer versions of the add-

in that eliminate the weaknesses listed below:

 Koios currently only includes commission charges from E*TRADE and does not allow the user to

input commission charges from other trading companies. The E*TRADE commission charges are

currently hard-coded into the add-in. If E*TRADE were to change its pricing policies, they would not

be automatically updated in the add-in. Thus, it would be better if Koios searched for these prices

from the E*TRADE website instead so that the user could be assured that the correct commission

charges are being applied. Furthermore, it would also be helpful to include a second tab in the wizard

that allows the user to input custom commission charges.

 The base currencies that the user can currently select are all hard currencies, which are currencies that

are not likely to depreciate suddenly in value. More simply, hard currencies to the most widely

quoted, such as USD, EUR, CHF, etc. Thus, it would be better if Koios included soft currencies,

which are the opposite of hard currencies, as well.

 Koios can currently only search for one company at a time. This was originally done to reduce the

number of loops required in the source code. However, it would be beneficial to users if they could

input a list of tickers, separated by commas.

Dagorova pg. 13

 As mentioned, Koios currently only searches exchanges that can be accessed through E*TRADE.

However, there are many other widely-used exchanges that the user may be interested in searching. It

would therefore be better if users could search those as well.

 Koios assumes that the user knows where companies are traded. However, it would be much more

useful to a user if Koios could suggest companies that a user could look at based on the exchanges

they select. For example, if a user is interested in NYSE and TSX, Koios could extract a list of

companies traded on each, find which are common to both, and return those to the user.

 Obviously, Koios relies heavily on user inputs. However, the usefulness of the add-in would be

substantially increased if the add-in were capable of searching for arbitrage opportunities on its own.

For example, once the process in the previous bullet is complete, perhaps Koios could automatically

get price data for all the companies that are common to the selected exchanges and highlight the ones

where arbitrage opportunities currently exist. This would significantly minimize Koios’ dependence

on the user, and it would make the add-in almost entirely self-sufficient.

Bibliography

E*TRADE. (n.d.). Retrieved from E*TRADE Financial: https://global.etrade.com/hk/en/home

Hong Kong Stock Exchange. (n.d.). Retrieved from HKEx: http://www.hkex.com.hk/eng/index.htm

London Stock Exchange. (n.d.). Retrieved from London Stock Exchange:

http://www.londonstockexchange.com/home/homepage.htm

Microsoft Support. (n.d.). Excel COM add-ins and Automation add-ins. Retrieved from

http://support.microsoft.com/kb/291392

MSDN - Microsoft Developer Network. (n.d.). Visual Studio 2010 - Visual C#. Retrieved from

http://msdn.microsoft.com/en-us/library/kx37x362%28v=VS.100%29.aspx

Dagorova pg. 14

NYSE Euronext. (n.d.). Retrieved from Euronext Paris Stock Exchange:

http://www.euronext.com/landing/indexMarket-18812-EN.html

Sharon Parq Associates, Inc. . (n.d.). Understanding Add-Ins. Retrieved from

http://excel.tips.net/Pages/T002276_Understanding_AddIns.html

TMX Group. (n.d.). Retrieved from Toronto Stock Exchange: http://www.tmx.com/

XE. (n.d.). Retrieved from XE - The World's Favority Currency Site: http://www.xe.com/

Yahoo. (n.d.). Retrieved from Yahoo! Finance: http://finance.yahoo.com/

